Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study investigated the influence of diverse laser processing parameters on the thermophysical properties of Ti-6Al-4V and AlSi10Mg alloys manufactured via laser powder bed fusion. During fabrication, the laser power (50 W, 75 W, 100 W) and laser scanning speed (0.2 m/s, 0.4 m/s, 0.6 m/s) were adjusted while keeping other processing parameters constant. Besides laser processing parameters, this study also explored the impact of test temperatures on the thermophysical properties of the alloys. It was found that the thermophysical properties of L-PBF Ti-6Al-4V alloy samples were sensitive to laser processing parameters, while L-PBF AlSi10Mg alloy showed less sensitivity. In general, for the L-PBF Ti-6Al-4V alloy, as the laser power increased and laser scan speed decreased, both thermal diffusivity and conductivity increased. Both L-PBF Ti-6Al-4V and L-PBF AlSi10Mg alloys demonstrated similar dependence on test temperatures, with thermal diffusivity and conductivity increasing as the test temperature rose. The CALPHAD software Thermo-Calc (2023b), applied in Scheil Solidification Mode, was utilized to calculate the quantity of solution atoms, thus enhancing our understanding of observed thermal conductivity variations. A detailed analysis revealed how variations in laser processing parameters and test temperatures significantly influence the alloy’s resulting density, specific heat, thermal diffusivity, and thermal conductivity. This research not only highlights the importance of processing parameters but also enriches comprehension of the mechanisms influencing these effects in the domain of laser powder bed fusion.more » « less
-
Development in self-healing materials and smart composites has continuously improved for many decades and has given rise to many real-life applications with implications for engineering materials, structures, and human beings who rely on these technological innovations to further human endeavor. This study involves the use of intrinsic selfhealing ability of poly (ethylene-co-methacrylic acid) thermoplastic, known by its commercial name as Surlyn 9520©, and combined two-way shape memory effect with Di cumyl-peroxide (DCP) cross-linked polybutadiene elastomer to achieve crack narrowing and closure with subsequent healing of the polymer blend surface. The simple batch mixing process resulted in an immiscible yet compatible blend, determined by two distinct melting peaks from DSC characterization and FTIR spectroscopy analysis. Different blends ratios of 80/20, 70/30, 60/40, 50/50 were investigated and characterized. However, the 80/20 blend was chosen to demonstrate the significance of the two-way shape memory effect, where a material experiences elongation upon cooling and contraction upon heating to achieve crack closure and effectual healing. Two sets of samples were studied; control Sample known as 2A and 2B samples were one time programmed to about 300% strain. Self-healing, which is a function of the poly(ethylene-co-methacrylic) acid component of the blend, was established for both sets of specimens. The flexural properties from three-point bending test indicate that although both sets of samples achieved good healing efficiencies, the 2B programmed samples displayed better healing efficiencies than the control by 30%.more » « less
-
Laminated multifunctional composites are highly desired in modern lightweight engineering structures. The purpose of this study is to develop a composite laminate with impact tolerance, delamination healing, strain sensing, Joule heating, deicing, and room temperature shape restoration functionalities. In this study, a novel self-healable and recyclable shape memory vitrimer was used as the matrix, unidirectional glass fabric was used as reinforcement, and tension programmed shape memory alloy (SMA) wires were used as z-pins. To provide multifunctionality, the programmed SMA wires were further twisted and formed into sinusoidal shape. Copper wire strands were hooked to the sinusoidal SMA z-pins to make them a closed circuit. Low velocity impact, compression after impact, damage self-healing, deicing, and room temperature shape restoration tests were conducted. The tests result show that the desired multifunctionality of the laminated composite was achieved. The hybrid laminate provides a promising design for lightweight load-carrying engineering structures.more » « less
-
Abstract Tension programmed shape memory polymer (SMP) fibers have been used as sutures for closing wide‐opened cracks per the close‐then‐heal strategy. However, the composite may be subjected to compression loading during service. These compression loads can reduce the amount of recoverable strain in these pre‐tensioned fibers, limiting their ability to close cracks. The purpose of this study is to investigate the effect of in‐service compression loading on the shape memory effect (SME) of composites consisting of SMP fiber and SMP matrix. To this end, pre‐stretched shape memory Polyethylene Terephthalate (PET) fibers were embedded into a shape memory vitrimer to obtain composite samples with different fiber volume fractions. The SME of both the PET fiber and the vitrimer was investigated. The effect of compression load on the SME of the composite was studied. It is found that, uniaxial compression on the composite along the fiber direction significantly reduced the shrinking ability of the embedded pre‐tensioned SMP fibers. Hence, this is a factor that needs to be considered when designing such types of self‐healing composites.more » « less
An official website of the United States government
